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ABSTRACT

Environmentrecruitment relationships can be difficult to delineate with parametric
statistical modelsand can be prone to misidentificatiowe usenonparametric
time series modelingvhich makes no assumptions about functional relationships
between variablesto reveal environmental influences on early life stagefs
bluefin tuna and demonstrateimprovement in prediction of subsequent

recruitment The influence ofkea surface temperatukghich has been previously
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associated with larvalgrowth and survival,was consistently detected in
recruitment time series dluefin tura stocks that spawn in tidediterranearsea

the North Pacific, and th&outhern @ean Short time series for the Gulf of
Mexico stock may have precluded a clear detamation of environmental
influeneces on recruitment fluctuatiorBecause the nonparametric approach does
not ‘require_specification of equations represent system dynamigsiedictive
models canikely be developed that appropriately reflélse complexity of the
ecological system under investigatiorhis flexibility can potentiallyovercome
methodological challenges of specifying structural relationships between
enviropmental conditions aritsh recruitment Consequently, there is potential for
nonparametric time series modeling to supplement traditional stock recruitment

models for fisheries management

KEYWORDS

Seasrface temperatureyna fisheries, ndmear modelingThunnus thynnus, Thunnus

orientalis, Thunnus maccoyii

I ntroduction

Since the Thompson-Burkenroad debates, the relative importance of environraest ver
fishing on the variability of fisheries has remained both unresolved and highly contentious
(Burkenroad, 1946; Thompson and Bell, 1934; Vert-pre et al., 20aBbility in year class
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strengthof fishescan depend on exploitation patterns and biological and environmental
conditions, including those experienced during early life stages (Cushing, 1969; Hjort, 1926;
May, 2011). Among iological contributionsto year class variabilityegg production andarly

life stage starvatigrpredation, and cannibalism have formed the basis of sémtlitment

theory (Beverton and Holt, 1957; Ricker, 1954; Shepherd and Cushing, Wd80j)egards to
environmental.contributionghere isrenewed interesh environmental effects on recruitment
variability "aslengths of environmental arfidheriestime seriescontinually increaseRecent
reconsideration’of time series such as the RAM legacy datalmsekimalled the environment
fisheries debate arfths suggestdtiat the environment does, in many cases, have a substantial
impact on fisheries productivifRicard et al., 2012; Szuwalski et al., 2015). The multitude of
environmentaltimeeries available for evaluation almost always leads to multiple hypothesis
testing which requires correcting for the levelsifinificance(Dunn, 1961). Accordingly, even
when significant correlations are found, they do not necessarily imply causation.

A variety of parametric statistical methods have been considees@luating whether
environmentalwconditionsfluence recruitmentAlheit and Hagen, 1997; Govoni, 2005; Myers
et al., 1993; Quinn and Deriso, 1999). Problematically, evidence of environacenitiment
relationshipgan appear to be ephemeral, existing as positive correlations at some times and as
negativecorrelations at other timgBeamish et al., 2004; Carscadden et al., 2000; Myers, 1998;
Ravier and Fromentin, 2004). The ephemeral nature of envirome@mitment relationships
can reflectithe presence of nonlinear dynamickv@eak coupling among variables, both of
which aretypically not amenable to modeling through linear (additive) statistical methods (Clark
et al., 2015xGlaser et al., 2014a; Hsieh et al., 2008; Sugihara et al., R0H2) alternative to
parametrie@mpirical analysisnonparametric approaches are demonstratively useful in detecting
ecological.interactionfGlase et al., 2014b; Liu et al., 2014; Perretti et al., 2013).

Advances.in, nonparametricne seriesnodeling have improved our ability to distinguish
causativeelationships from spurious correlations (Sugihara et al., 201aydition, were
parametrianedeling may be insufficient to capture complex dynamidatactionsan natural
systemsa mare robusdpproach is offered viaonparametriempirical dynamic modeling
(EDM; Deyle and Sugihara, 2011; Deyle et al., 20C8&mplex dynamics are pervasive in
marine environmentsnd arisébecause oliigh system dimensionality (i.e. the number of

interacting processes in natural systems, including fishery exploitatidripainterdependence
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of variables thaproduce nonlinear population dynamics (Anderson et al., 2008; Glaser et al.,
2014a; Hsieh et al., 2005; Liu et al., 2012; Steele and Henderson, 1984; Walters and Collie,
1988). As a nonparametric meth&DM offersconsiderable modelinjexibility because na
priori ses of equationsre needed to represent system dynamicsgeuwgtural modeling
equations).lnstea@DM relies on the structure of the data to identify interacting variables by
utilizing dynamical similarities between sequencesldervations, whichanaccordingly
accommodate a variety dfnamial systembehaviors (Glaser et al., 2011; Perretti et al., 2013).
In traditional fisheries stock assessmengsruitment of fish to the population is modeled as
aparametric function of the spawning stock size through a sexgkitment relationship, for
which the strength, functional form or even existence of a relationship remains mé&mtala
source of uncertainty (Gilbert, 1997; Maunder and Deriso, 2003; Myers and Barrowman, 1996)
Further, as the stock recruitment relationgtefines the benchmarks by which stock status is
evaluated and forms the basis for projected future recruitment levels that determine allowable
catches, itremains highly controvergigbse et aJ 2001) Few species epitomize the
controversialnature of assumptions surrounding the stakHtnent relationship as the global
bluefin tuna stecks which include the eastern and western Atldmtimaus thynnys
Scombridae), PacificThunnus orietalis) and Southern OceanBhunnusmaccoyi).
Assessments of Western Atlaribiciefin tuna have struggled for many years with the divergent
high versus low recruitmeihtypotheses with little resolutidifrromentin, 2002; Rosenberg et al.,
2013)and'likely little potential for resolutiothroughclassical parametric stogkcruitment
model fitting“approaches (Porch and Lauretta, 2016). For this reasbas many of the early
life history precesses that definppropiate larval survival appedo beenvironmentally driven,
bluefin tuna represent an excelléotal speciesor demonstrating howonparametri€DM
approackscan be used tmentify environmental variables that impraeeruitment predictiosn
Bluefin.tuna.spawn in narrowly defined geographic a(Bézck et al., 2005; Farley and
Davis, 1998, Garcia et al., 2005; Satoh et al., 200&) leverage thesefour well-defined
spawning_distributions to revealconsistent pattein relationshig between sea surface
temperaturdSST)occuring in spatotemporalproximity tolarval abundance and subsequent
recruitment to the fishen5ST has been an important environmental factor in descrigions
bluefin tuna spawning and larval habitat (Alemany et al., 2010; Davis et al., 199( &zt
2005; Muhling et al., 2012; Satoh, 2010; Tanaka et al., 2007; Teo et al., 2007). Prevailing
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121 environmental conditions are proposed to influence growth and suivizalensitydependent
122 manner (Bakun, 2013; Bakun and Broad, 2003; Masuda et al., 2002; Matsuura et al., 1997,
123 Reglero et al., 2011; Tanaka et al., 2006; Young and Davis, 1990). Consequently, our study is
124  less abouaddressingraecologygap indefininglarval tuna habitatand more about

125 demonstratinghe utility of nonparametric predictive models thatlectthe complexity of the

126  ecological'system under investigation. Giveahtential complexity of larval bluefin tuna

127  ecologyiit'maybe unreasonable to expesationships between environmahtonditions and

128  recruitmento align with simple mechanistic modéBakun, 2010; Fromentin and Restrepo,
129  2001). Accordingly, we demonstrate tindity of nonparametric time series modeliugd

130 comparemaedels that include environmentadriablesto those that do noNonparametric

131  predictive performance is al®mmpared with a parametric stecruitment modelinally,

132 EDM is used toidemonstrate how model predictiand related uncertainty measures can be
133 useful in conveyingcientific advice

134

135  Methods

136  Time series of recruitment estimates and fishery-dependent recruitment indices

137

138 Agefl recruitment for theastern Atlantic stock that spawns in the Mediterrasemandfor
139  thewestern Atlantic stock that spawns in the Gulf of Mexico viberth estimated using virtual
140  population"analysithat didnot impose a stock-recruitment function (Table 1). We excluded
141  years 2004-2013 from analysis of the easfdlantic stock to avoid estimates that were

142  potentially prone to retrospective bias, a condition where the estimated Vadinge cepending
143 on the terminal year of the assessn{@monymous, 2014a; Mohn, 1993). A@aecruitment for
144  the Pacific.stock was estimated using a fiiegrated stock assessment model, from which
145 1952 and 2009-2012 were excluded to avoid retrospective bias (Anonymous,. Z@&tdbnal
146  and, sometimes, initial years of recruitment are often poorly informed by data,daenmmon
147  practiceisto consider estimates for these years as unrélatnrymous, 2014aBtock

148  assessment of Pacific bluefin tuna incorporated a Bewvéttdinstockrecruitment function

149  (Methot and Taylor, 2011); however, alternative versions of this assessmetid that

150 functionally constrain reaitment estimates produce nearly identical results (M. Maunder,

151  personal communication). Thus, Pacigcruitment estimates were thought to reflect
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environment and spawning conditions rather than beirgtai by an assumed steck
recruitment relationship. Age recruitment foSouthern @ean bluefin tuna was also available
from a stock assessmeg@tnonymous, 2014c).

By necessity, recruitment estimates used in this analygismodelderived products rather
than empirical.measures of recruitment, though they are little constiajreedtockrecruitment
relationship Recruitmentestimatesntegratel multiple sources of information such as age or
length compositiomnd relatve abundancendicesto obtain consistent estimatef recruitment.
Ideally we"would want to consider only empirical indices of recruitment, howeegspite the
global importance of bluefin tuna there exist very few ltgrga scientific surveys and feWwat
would permitgeither by length of time seriesbgrperceived reliability as indicators of
recruitment; exploration using EDM. EDM tends to perform better on time series that are longer
than 40 observations (Glaser et al., 2011, 2014a; Sugihara et al.,NI886df the other indices
that exist generally are fishedependenand reflect multiple age classes. Even the single
scientific survey for western Atlantiduefin tuna-a larval index- is considered a better
indicator ofttherspawning stock than of recruitmenisTéaves only two indicesan age0
trolling index‘in‘the Pacific Ocean and the Spanish baitboat index for ages 2 and 3 inettme east
Atlantic Oeean- that permit exploration bigDM.

Thesewo fisherydependent recruitment indices were thus usddrther evaluate
environmentakffectson bluefin tuna recruitmenkor the years of 1964 to 2006, an age-
aggregated index of 2 and 3 year old fish harvested by the Spanish baitboatfessemglyzed
(Table 1) Altheugh this index begins in 1952 and extends beyond 2006, 1952-1963 and 2007
and beyonavere excluded becaufleet selectivitychanged dung these time periods
(Anonymaus, 2014a}-or the north Pacific stock, standardized cagehuniteffort for the
period of 1980-2012 from th#apaneseoastal troll fisheriesf Kochi, Wakayama, and Nagasaki
Prefecturedias been used as an @hmdex in stock assessmemtd was included in our analysis
(Anonymous,. 2014b).

Time seriesof 'SST

In delineating spatial and temporal extents of SST measurements to be used in the analysis,
we utilized spatial information about spawning and ladistributions, as well as temporal
information about spawning events, and timing of flexion and gastric develofitaginet al.,

1996; Kitagawa et al., 2010; Sawada et al., 2005)s\viemarizedSSTpatterns by first taking

This article is protected by copyright. All rights reserved



183  the broadest possib$patial view followed by more localizedatterncharacterizationwWe

184  constrained the temporal extent of our analysis to months of the year closelyngededng,

185  and following reported spawning peakin-interpolated monthly mea®STwasobtained from
186  the International Comprehensive Oceémosphere Data Set atdegree spatial resolution

187  (ICOADS; National Climatic Data Centel$ST at 2degree grictell resolutionwasaggregated

188 into larger-bounding boxes using grid cell sample size to compute weighted means and

189  variances:"Wealso obtainedasonal and annuablices of Atlantic Multidecadal Oscilliain

190 (AMO) and Paific Decadal Oscillation (PDO); thse broagscale climate indices aparticularly
191  useful to considebecause they are readily availafiletesting,and canepresent the combined
192  effects of asrange akgionalscale processdbought to affect recruitment success.

193 Atlantic'bluefin tunaspawn in the Mediterranean Sea in June and July in proximity to the
194  Balearic Archipelago and eastward towsa&icily (Garcia et al., 2005We delineatd a

195  bounding box surrourilg the Balearic Archipelago (8% 43 North and -8to & East) and

196 three sequentially smaller boxes covering the saugst Mediterranean Sea, the extent of

197  surveys conducted by thestituto Espafiol de Oceanografi@nd an area south of the

198  archipelago where high larval densities have reported (Fig. 1A; Alemany et al., 2010;

199  Garcia etal,, 2005). In the Gulf of Mexidarval bluefin tuna tend to occur in the Loop Current
200 (LC) frontsand in the boundaries of anticyclonic mesoscale features outside of thgitvCake

201 influence (Lindo-Atichati et al., 2012). Spawning occurs during the months of April, May, and
202  June (Block et al., 2005). Four bounding boxes were specified, the largest of which encompasse
203  the northem Gulf of Mexico (2%0 29 North and 265to 276 East), followed by the region of
204 immediatetinfluence (ROI) of the springl thearea west of theC where spawningnd larvae
205 have been observednd an area north of the LC (Fig. 1B; Lindo-Atichati et al., 2012; Muhling
206 etal., 2013; Teog et al., 2007).

207 North Pacific bluefin tuna spawn in proximity to Chinese Taipei, the Ryukyu Islands) and i
208 the Sea of Japdiatoh, 2010Q)Spawning occurs in the Sea of Japan in August and in proximity
209 to the Ryukywrlslands and Chinese Taipei from April to June (Satoh et al., 2008). Laefad bl
210 tuna have beecollected south and east of Chinese Tajfteh, 2006; Kitagawa et al., 2010).

211 We specified four bounding boxese largest of which encompassed the East China S&a (22
212 38 North and 123to 142 East), followed by an area surrounding the Ryukyu Islandsyréze

213  east of Chinese Taipei, atftearea in the eastern Sea of Jaffag. 2A). SoutherrOcean
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bluefin tuna spawn in a narrow area between northern Australia and the Indornasiichain
west of Java during a protracted season that occurs from SepteriMaech (Farley and Davis,
1998; Farley et al., 2014)akvae have been collected betwetw 20 South and 102to 124
East(Farley and Davis, 1998) and a spatial bounding box was definedd@ré& Fig. 2B).
Detecting environmental effects on recruitment

Theunderlying premise of nonparamettime series modeling that dynamical sequences
of observedeventsarisefrom latentecological and environmentatocessedf a response
process, likefish abundance, is influenced by a forcing procesdjgshetundancshould
contain information about the forcing process in addition to information about its owmainter
dynamics (Sugihara et al., 2012; Takens, 1984kem’'s(1981) theorem shows thiatne-
delayed coordinate embeddiogpture properties of the original dynamic systérme-delayed

embedding invalves transformingiee series int@ set of timedelayed coordinateectors,
X, = [x[, XX, ..., )g_(E_l)J , Wherex is a time seriesariable of interest is time, 7 is the

time lag, andE is the embedding dimension. The embedding dimension is the number of time-
delayed coordinates used in reconstruction (Glaser et al., 2014a; Sugihara and May, 1990).
Simplex.projectiorutilizes the ide#éhat coordinate vectors that are similar at tiraee also
expected to have similar trajectories+t. In generating predictiondjfferent values of the
embedding dimensioB (integers between 1 and)Mere evaluated to determine the
dimensionalitythat provides begiredictionskill. To calculatepredictionskill, coordinate
vectorsweredivided into sets of library vecto(t build the model) and predictimectors(to
test the predictive skill of the mojlePrediction skillwas calculated as the Pearson correlation

coefficient (p.).between observed and predicted val&eglidean distance was calculated
betweensthe-prediction vect§y and all library vectors, and tiie+-1 nearestibrary vectors to

the prediction vectowereidentified. The forward trajectories of the nearest neighbggs,,

wherej denotes'the index of thet1 neighborsywerethen used to generate weighted

predictions @t , forX,:

E+1
~ ij,t Xj,t+l
(1)
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241 Weightsare w, = exp(—d(xt X)) /_d) , which is the Euclidean distancé(X,, X ), to neighbor

242  vector j relative to the nearest neighbor vectbrBecauseur recruitment time series tended to
243  be short, predictions were made using leave-one-out eabsstion, rather than splitting the
244  datasets into library and prediction v@s. All analyses were conducting in the R statistical

245  computing environment using the rEDM library (R Development Core Team, 2012; Ye et al.,
246  2015a)=Datawere firsdifferenced AX= X, — X ) and normalized (mean = 0, standard

247  deviation =1)."lt is a typical practice in EDM to fudifference and scale data inputs, as scaling
248  allows time series comparison in relative terms and differencing addresses nonstationarity.
249 To determine whether environmental signals could be detected in recruitment c;mami
250 usedConvergent Cross Mappif@CM; Sugihara et al., 2012}.CM is simplexbased EDM

251 technique that was used to addnebether a response time series can be used to reconstruct a
252  forcing time series. This approach may @g@pcounteintuitive, but corresponds fbakers's

253 theorenthat a response procestsould contain an information signature aborglatedforcing
254  procesqSugihara et al., 2012). In addition, time deléggs)in cross-mappingreinformative
255 in understandinghe timing ofeffects between variabl€¥e et al., 2015b). ime serieof

256  sequentially.increasing length, wereused to reconstruthe forcing variableandto evaluate

257  the presence of convergent behavi@ thatpredictionskill improves a4 increasesThis

258  criteria isused to distinguish causality from simple correlgtlmcauseredictionskill should

259 increase as.more information is included indhalysis(Sugihara et al., 2012All possible

260 library vectorstef lentl L werecompared to the prediction data, whrelBults inn estimates of
261  prediction skillkConvergencevasconsideedto occur ifmeanpredidion skill at the longest.

262  was greatethan O (i.e. centered 80% mbbservations did not include 0) agbaterthan

263  predictionskill at the shortedt (Clark et al., 2015).

264  Short-term.foerecasting using environmental indices

265 While CCMuJis useful for detecting relationshipstweenvariablesijt is not designed to

266 generatesherttermpredictionsper se Deyle et al(2013)descriles therelated technique of

267 EDM that relies on both the response and forcing data to getieratseries predictionEDM

268  advances Takens&pproacho situations whee multiple systencomponentsre analyed

269  together (Deyle and Sugihara, 2011). In our analysi#tjvariate embeddingvasconstructed

270  that includel aforcing variabley (e.g.{x[, X er X oerer X (e e y]). While Taken’s theorem
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suggests that information abaufiorcing variable shouldlreadybe contained i response¢ime
series it is not redundant to include stochastic forcing variaiplesultivariate embedding
because stochastic variablask deterministic signalg.hus, includingstochastic variablesi
multivariateembedding should improve prediction (Deyle et al., 2013).

WeincludedSST variables that we previouslyselectedusingCCM analysis irsimplex
based EDMand evaluated whether relative improvement in predictive skill was obtaireed. W
first used a'null'model toalculate probabilities that predictive skill could be improved by an
unrelated 'eavironmental time seriesriutation tesg involved shuffling thectual SST
variable,y, to remove any relationship witecruitmentx, and therwe includedthe shuffled
variable ingpredictionsf x. Then, anull distribution of predictiorskill consistingof 1,000
pemutationswas calculated. The null distributievas used to calculathe probabilitythat null
model prediction skill exceeded predictiskill from the actual recruitment and SST time series.
EDM predictionswvere also comparedd maimum likelihood fitsof a parametric stock
recruitment relationshithat included the same SST variables selected using (BOMer,
2015; R Development Core Team, 2012). We used a Ricker functionaldiois flexibility to
fit different'shapes of the stoc&cruitment relationships. As the focus of the project was not to
explore different functional formsye did not evaluate the fits of alternativedels.

Two_additional analyses were carrieat to address directionality of recruitment responses to
environmental variables and to quanphgdictionuncertainty Firstly, gven that EDM enables
predictionin_a statedependent manner, directionality of recruitment responsgeSTanust be
determinedthroughost hocanalysis, which is termestenario exploratio(Deyle et al., 2013).
Scenario exploratioproceeds by modifying the actu$Tobservatioratthetime lag
associated with its effect on a single recruitment data pdirgcruitmentprediction is made
under a small positive SST increade5{C). If a hypothetical increase in SST would have led to
a hypotheticaincrease irpredictedrecuitment, therelationship at thatata point is positive.
The process.ialsorepeated using a small SST reduction. Tiig-stepprocess is repeated at
each data paeint to identify trends in recruitment response directiomadytemperatures
hypothetically,beerooler or warmerSecondly, ® quantifypredictionuncertainty confidence

envelopes were calculated by summing variance tattributed to (1) recruitment estimation

uncertainty reflectingimprecision ofrecruitment estimates used as data inp\m(@m)) and

(2) EDM predictionuncertainty(var(;<t+1)), given anassumedndependence between these
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variance terms€EDM predictionvariance was calculataging mean annual recruitment

estimates afve et al., 2015a):

E+1 ~ 2
ij (XJM— X+l)
var(x., )= . 2)

2w,
j=1

Variance attributed to recruitment estimatiamcertainty was quantified using 500 bootstrapped
recruitmenttime series. Bootstpguestimateseflectedthe range of likely outcomes of
recruitmentestimatesvhile incorporating temporal autocorrelation between annual recruitment
estimates. Recruitmeastimationuncertainty was the variance between pesiimates made
from each_bootstrap iteration.
Observation.error effects on prediction skill

Givenrthat'employing modelerived recruitment estimates is not ideal, and yet the high
level of observation error seen in mdmshery-dependent diisheryindependenindices may
preclude the detection of any true signal, it was informative to simoltestervation error effés
on predictiorskill. The process of estimating recruitmensiock assessmentodels is likely to
impart some level of autocorrelated error and potentially some bias as the estimates are products
of an underlying model structureingple time series were simulateging a random walk model

of the formx, = x_, + eny,, whereenvis a normally distributed white noise process (mean = 0,

standard deviation = 0.2) representing an environmental influencedrservation error was

introducedias lognormallglistributed erroabout therue values|, = x, exp(gt — 5%)

Observation,deviates, , werecalculated ag, = ¢8t_1+77\/1+7 , Wheren is a normally
distributed random deviate with mean 0 and standard deviétiand ¢ is the autocorrelation
coefficient. $mulatiors consisted of using EDk reconstructime series wheprovidedwith

the observed.time seridsand the observed environmental variable; In these simulations,
predictionskill wasmeasured aBearson correlatiotoefficient (o ) between EDMpredictions
and the true valuesf variablex. Simulations were carried out 1,000 times for combinations of

varying levels of6 and¢.
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Results

Detecting environmental effects on recruitment

UsingCCM, a similar pattern emerged for three of four bluefin tuna stocks regarding
environmental effects on recruitme@ur analysis of th#editerranean stoclevealedhat
regionalSSIT series could be reconstructed from recruitrestimategTable 3. Repeatedly, at
each of‘thefour bounding box spatial scales, convergent belod@@M was evident in the
reconstruction‘of July SSB month associated wifeak spawningFig. 3). Reconstruction of
July SST reflected aYlear time lag ints associationvith recruitment of dyearold fish. This
effect of SSTson recruitment wasidirectiona] meamng that CCM confirmed the intuitive
possibility that*SST could affect recruitment dynamics, and correctly dightisseémplausible
reverse relationship. Our analysisre€ruitment in th&ulf of Mexicosuggesteao dynamic
similarity between recruitment and S&F this stock In the north Pacific, convergent behavior
in reconstruction of May SST was evident for the area east of Chinese Taipeid)l&bla
broaderspatialscale, Julgnd AugusSSTcould be reconstructed for the bounding box that
encompassethe East China Sel the north Pacific region, SST reconstructions corresponding
to May and.July reflect the spawningd-point and the monttmmediately following spwning,
respectivelyln addition, reconstruction of SST in the Sea of Japan most strongly demonstrated
convergent behavior during August, which is when spawning has been repottes fegion.
Analysis of recruitment in thBouhernOcean was morehallenging given the protracted nature
of spawningrimthis region, but nevertheless CCM revealed a signal in recruitmemicy tizat
was associated with January SST.

In analysis of both Atlantic stoclesd the north Pacific stockonvergent behavior was also
evident in the reconstructiaf ocean basimvide climatic variability, namely AMO and PDO
(Fig. 4). Given.the basinide effects ofthese climateariables, the spatial distributions of
larval, postlarval, or juvenile stages wed little help forinferring the timing ofany effect
betweerclimate and recruitment. Instead, we relied strictly on time delays or lags between
forcing andresponse variabl&ge examined cross mapping skakross a sequenoétime
delays(-3 to +3 year3 between forcing variabdeand recruitment response.the Atlantic

Ocean the strongestffect of AMO on Gulf of Mexico and Mediterranean Sea recruitment

This article is protected by copyright. All rights reserved



358  occurredn winter, with no lag between thfercing variable andhe agel recruitment response.
359 Fall PDO could be reconstructed from ageebth Pacific recruitment with no time 14gig. 4).
360  Short-term forecasting using environmental indices

361 In constructingEDM-basedecruitment predictionr each bluefin tuna stock, we took a
362  synoptic view,of the spatial extent of SST effects on recruitnmesdning that we assumed that
363 largescale.SST should generally affect all larvae ioroadarea ina similarway. This approach
364 enabled'recruitmerredictionsto be based upon SST thaaseoarsely estimated across large
365 Ocean expansel each ocedn region where spawning takes placearseregional temperature
366  signals tended to refleettherthe timing of peak spawning or the month immediately following
367  spawning (Fig=5)ln the Mediterranean Sea, recruitmprgdiction was improved by including
368  July SST in"EDM and null model permutatidestingproduced a probability of 0.lthat

369  predictiveimprovement occurred by chandgékewise,parametricstockrecruitmentpredictions
370  were improved when July SST was included as a multiplicative environmentd! Etfenpared
371 to EDM-based predictionparametrigredictionswere slightly better (Fig 5A & 5B). For the
372 north Pacifiersstock=DM-basedredictions were improved by includi®$T signals from either
373 the East China‘Sea in July (bounding Boxnull modelpermutation prob. 0.07) or from the Sea
374  of Japanin.August (bounding b&k null modelpermutation prob. 0.04). Neither S8me

375  seriesmprovedparametricstockrecruitmentredictions consequently, EDMasedoredictions
376  were better overall (Figs. 5E & 5F). Predicti@misSouthern @ean recruitmerfared equally

377  between EDM angarametrionethods EDM permutation prob. 0.26).

378 Using the“two fishery-dependent indices, we found convergent belfaadCM)for the

379  Mediterranean’stock in terms of reconstructing SST signals in montltsadsdavith spawning.
380 CCM also revealed signals of AMO (summer, fall, and annual indices) in the Spaitisiab

381 index, and these effects were detected at time lagsoil -3 years, which is not surprising as
382 the index pertains to 2 and 3 year old fish. Evidence of PDOtsigsan the north pacific age
383 trolling index.were also found using CCM, and the strongest cross-mapping skill ddourre
384 fall PDO, which was consistent with the fall PDO effect identified in the analysis of recruitment
385  estimatesMoving from CCM to construction of predictive models using EDM, predictive skill
386  was only improved slightly wheB8ST was included in EDNdased predictions of the Spanish
387 baitboat index and no improvement was obsefgethe north Pacific agé trolling index.

388 (Table 3).
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We wsed EDM to generate otyearahead predictions for Gulf of Mexico and Mediterranean
Sea recruitmen(ig. 6). Recruitment predictions for the Gulf of Mexico were made without
inclusion of SST, as no SST variables improved prediction skill (Fig. 6B). We alssaes@tio
explorationto reveal the underlying directionality of responbesveen SSThanges and
recruitment fluctuations (Fig. 7Jor the Mediterranean stock, smadljustments to observed
SST revealed a negative relationship with recruitmef8¥ of predictions and positive
relationshipin“3% of predictions This resulsuggestthat SST may influence recruitment in a
state dependent mannblegative effects of SST on recruitment werere consistently
observed for narth Pacific stock, with 75% of predictidamonstrating negative relationships
with July SSTsin the east China Seand 92%of predictions demonstrating negative
relationships wittAugust SST irthe Sea of Japan
Observation error effects on prediction skill

Our simple simulations evaluated the effects of observation error on predictlomfsifirst
source of ebservation errarastemporalautocorrelabn and thesecond source of observation
error was random noise. Temporal autocorreldtiaa littleinfluenceon prediction skill (Fig. 8).
Conversely, random observation noige) eroded prediction skill of EDM. When both sources
of observation error were introduced usinigetorial design, prediction skill was more rapidly

eroded assobservation noise was increased in comparison to indneasegorrelation.

Discussion

Using €CMyand EDM togetheour analysis demonstrated ti&8Tin temporal and spatial
proximity tosgpawning events, improved globaledictionof recruitment for three out of four
bluefin tuna populations$hort time series for the Gulf of Mexico statlay have precluded a

clear determination of environmental influences on recruitment fluctuaéam$ound

comparativeeffects ofSSTs at peak spawning or the month following peak spawning on bluefin

tunarecruitment inthe Mediterranearsea north Pacific, and Southerrc@an but not for the
Gulf of Mexico. Temperature camediae growth rates, podtexion survival, onset of piscivory,

andcuespawning for bluefin tuna (Evans et al., 2012; Fromentin and Powers, 2005; Reglero et

al., 2011; Sawada et al., 2005). As a potential spawning cue, we identified weak SSTirsignals

recruitment time series the months preceding spawning or assted with theonset of
spawning in the Mediterranean Sea, north Pacific, and the Southern OcearljT8blghern
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bluefin tuna experience spawning peaks in October and February (Farley and Davis, 1998),
suggestig that January SSJould reflect either a spawning cue or an effect on recruitment
success, or both. Likewise, SST signals in July and August in the East China Sdsecould
spawning cues, influence larval demography, or both. With respect to forcatigiageindices,
our analyses.of recruits demonstraé@dapproximately instantaneous response betaleaate
and aget recruitment foboth Atlantic stocksln this instance, a lag of 1 year may be a useful
heuristic' about'the influence of climate sometime during the first year of life, rather than an
exacting measure of time lags between evefeset al., 2015b). However, the instantaneous
response betweatimateand aget recruitment does not preclude the possibility that climate
influences.catehability, with this effect on data inputs to stock asseskeiegtretained ithe
recruitmentestimatabat we analyzedut notably, the ages-2 and 3 fish captured in the
Spanish baitboat indices responded with lags that would reflect the climhteniceg on
recruitment 23 years priorSimilar results have also been obtained for other fighieeit and
Hagen, 1997; Hollowed et al., 2001)

Using seenario exploration with EDM we found that, on average, tempehaitianegative
relationship withMediterranean Sea and north Pacific recruitment. The-dégtendent nature of
EDM alsosrevealedeasonably frequelpiositive recruitment responsesSST The flexibility of
EDM to_characterize these relationshijhsstratesthe potentiafor nonparametric methods to
overcome methodological challenges of specifying structural relationshipsdretw
environmental conditions and bluefin tuna recruithiénomentin, 2002; Pepin, 2015). The
relative stabilityof bluefin tuna recruitment (in comparison to other fish stosies)largely
resultfrom densitydependent survival at larviifle stagesincludinginteractionsamong
conspecifis thathatch intermitently during a spawning period (Bakun, 2013; Royer and
Fromentin, 2006). Bluefin tuna tend to spawn in lower productivity watbese convergence
zones in ocean.eddies work to aggregate larvae and potentially enhance cannibalism,swhich ha
been proposetb regulataecruitment fluctuation@Bakun, 2013; Kaji et al., 1996; Reglero et al.,
2011; Youngrand Davis, 1990). Dynamic feedback betwsuccessive hatching of larval cohorts
during a spawning period, and the environmentally-driven manipulations of growth and
consumptive interactions, togethibustrate thecomplexinterdependence amongriablesthat
influencerecruitmentCatalan et al., 2007). Capturing these potentradiglinear interactions
was accomplished by nenechanistic approaches such as those employed here.
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While our analyses shed some light on the potential environmental processes affecting
bluefin tuna recruitment, the purpose of our study was nadristruct nonparametric models
that reflected all facets the speciksival ecologyRather our studywas intewled to
demonstrate a procefs identifying whether unique information about environmental time
series is contained within a-ozcurring biological time serigSugihara et al., 2012; Ye et al.,
2015b) In this sense, variable selectifmm development of nonparametric models is probably a
moreimportantconsideration than contrastipgedictive skill withparametrc approaches.
Sugihara et'af2012)and Ye et al(2015a)identify severakonsiderationselated to variable
selectionn nonparametric modelingncluding the possibility that causative variables may not
be informativeson theown, but require interaction with other variab{@smultivariate EDM
for example) te produce skillful focasts Where otherariables coulde added to our analysis
to improve prediction, EDM may be preferable to parametric models beaddg®nal
variables may reveal nonlinear stai@pendent behaviors (Glaser et al., 2014a; Sugihara et al.,
2012) Simulation testing conducted elsewhere has similarly shown that parametric fitting can be
problematieswhen applied to nonlinear systems, even when the correct model is knowrg becaus
useful iformation can otherwise be classified as observation or procesg¢Rermatti et al.,
2013; Ye'et.al., 2015ahs a caveat, variables that imprguediction do not necessarily imply
causality-but theseariables may be proxies for mad@gect causative relationshigSlark et al.,
2015; Sugihara et al., 2012hcluson of metrics related to eddy activity or to the presence of
convergence zones may improve prediction; however, the recruitment patterns dhatyzed
predate the'satellite era, thus requiringubke of a coarsecale environmental data set.

If analyses‘based on high quality sateltitrived productsvere possiblea clearer signal
about environmental relationships could potentially be obtalngtie Mediterranean Sea, the
eastward progression of Atlantic surface waters from the Strait of Gibraltar produces meanders
that generate mesoscale anticyclonic eddies of diameters of ~100 km to ~150 km that last weeks
to months (Garcia et al., 2005; Millot, 1998)esoscale eddies vary annually ireimsity and in
northward.intrusion towards the Balearic Archipelago. €hexflies create retention zones that
may act to'enhance biological interactions involving growing larvae (Bakun, 2013; Gakja e
2005). Similar zones of retention are created in the Gulf of Mexico, as the sprin@€Loent
intrudes northwar@fom the Caribbean Sea with anticyclonic flow that produces mesoscale
eddies with diameters >300 km and which propagate westward for periods of days to ~1 year
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(Elliott, 1982; Lee et al., 1995; Oey et al., 2003). Likewise, northeastward Kurosiren@
intersect the Ryukyu Islands and produce mesoscale eddies of at least 500 kmter,caame
does Indonesian current flow between northern Australia and the Indonesian agd{ipely et
al., 1997; Kimura et al., 2010; Lee et al., 2013; Satoh, 2010; Yang et al., 1999). The physical
conditionsthat.arise from the progression of surface wasgedikely to influence larval growth
(Pepin, 1991; Pepin and Myers, 1991; Reglero et al., 2011). BlueBnarvae haveelatively
early onset'of flexion and gastric development, on the order of 15 dayisgtolsf-and these
developmental“events coincide with the onset of pisciidayi et al., 1996; Miyashita et al.,
2001). Following these developmental events, larger and faster growing post-flexiodualsivi
survive to subsequent developmental phases (Tanaka et al., Za@6paratively, hese
developmental‘events appear to align with the timin§T effects that we identified
Recruitmentforecastingusing nonparametric methodsstelsofocused on salmongf which
direct estimates of recruitmep&ck to natal riverareoften available (Ye et al., 2015a). For
many speciesmpirical estimates of recruitmegute not availabtendeed, for highly migratory
species suehras bluefin tumagruitmentsurveys are usually not feasiblurthermore, when
surveys are available they often have extremely high levels of observation/dnile it is
desirable‘te,only use empirical data, often their absence and the high levelrottaserror
associatedwith empirical observations necessitate use of4maskd products in subsequent
statistical analyse$Vhen suctuse of stock assesent is unavoidable, it is advisable to: 1)
consider uncertainty and bias in the stock assessment estimates themselves, 2) perform cross
validation to"evaluate predictive capability, 3) confer directly with amaipsblved in the stock
assessmenisyady consider multiple lines of supporting evidence in drawing conclusions
(Brooks and Deroba, 2013ach of these recommendations was followethis study, and
additionally we carried out a simulation analysis evaluating the tradetfeen induced
autocorrelation,,as might occur with model-based products, and observation error commonl
seen in empirical estimates. We might expect mbdskd products to have reduced observation
error but induced autocorrelatiolie to the modelingrpcess itself. This is certainly the case for
western andeastern stocks of Atlantic bluefin tuna wherslageg of length composition data
dampens recruitment signglsnonymous, 2014a). Observation error may also explain why we
observed a small predictive improvement in model-based recruitment and no imprbirethe
empirical aged index for the north Pacific stock. Our simulation intksahat increased
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513  observation error erodes predictability of EDM methods relatively quicklyewidreased

514  autocorrelation has a more moale effect on predicin skill. With the appropriate cautiorisee
515 Brooks and Deroba, 2015), use of model-derived products may be a viable step toward

516 improving recruitment predictions in cases where no direct recruitment estimates are available or
517  where observation error in empirical estimates i.hWe note, however, that our simulation

518 was not exhaustive and did not consider situations where either the model outpungpitioale
519 data may exhibit bias; scenarios that would clearly confound the ability to reheviene signal.
520 Nonparametric approachescompass a variety of relatedthniqueghat enable

521 identification of/causal links anzhnguide the construction of neterm predictiorwithout

522  requiring speeificaon of structuralequations (Deyle et al., 2013; Sugihara et al., 2012; Ye et al.,
523 2015b). Sueh nonparametapproachesanot negate the importance of staekruitment

524  functions for fisheries management. To the cont@eyerministic signals pertaining to parent
525  stock strength should be contained in recruitment patterns, as per the ¢hefretidation

526  provided by Takenrs (1981)theorem Furthermore, future recruitment is fundamental to

527 fishelies management, with nonparametric methadging an increasingly relevant rale

528 prediction(Munch et al., 2005). darterm forecasts made using EDM could be particularly

529 useful ininstances whetke newestohorts have not yet become fully vulnerable to fishing, and
530 thus may.not be presentcatchatage matrices. This is indeed the situation faced during stock
531 assessmentmploying virtual population analysis, suchirmassessmesbf Atlantic buefin

532  tuna (Anonymous, 2014a). This situatimay also ariséor assessmenta which the newest

533  cohorts areroften the least reliably estimgtetihave substantial influence on stock abundance
534 and fisheriesscatches over temporal scales relevant to managBnoerkis and Legault, 2015).
535 Lastly, the detected influence of environmental drivers of recruitment in three out of dedinbl
536 tuna stockss pramising for reconciling stock recruitment relationships that have remained so
537 elusive forthese species. Incorporating environmental factors such as SST, grsklikehl

538 otherenvironmental factors, into eithaparametric recruitment relationshapthin a stock

539 assessmentimodel or a nonparametric appr@actiondiere may reconcile deviations from a

540 true stock recruitment relationship. Further, greater predictive skill oftegarrecruitmeninay

541 lead to determination afauses of historical changes in recruitmenelated to spawning stock
542  size, and consequeyntsupport improvements tabluefin tunafisheries management.

543
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Figure captions:

Figure 1.Bounding boxes used to summarize sea surface temperatures in the Mediterranean Sea

(A) and Gulf'ef.Mexico (B). Latitude and longitude in decimal degrees.

Figure 2. Bounding boxes used to summarize sea surface temperatures in the north Pacific Ocean

(A) and Seuthern Ocean northest of Australia (B)Latitude awnl longitude in decimal degrees.

Figure 3. Gonvergent behavior demonstrating improvement of orapping skill as time series
library lengtheincreases. Convergence reveals forcing of recruitmenndbgby sea surface
temperature (SSThrough reconstruction of SSime seriesnformed by theecrutment time

series.

Figure 4.Crossmapping skill (Pearson correlation coefficieot)climate variablesas a function
of cross-mapping lamp years Closed circles indicating lags exhibiting convergent behavior.
AMO isfAtlantic Multidecadal Oscillation, PDO is Pacific DdehOscillation, Med. is

Mediterranean Sea, GOM is Gulf of Mexico.

Figure 5. Comparison of empirical dynamic modelbagedoredictionskill (dark red bars and

closed circlesjo that ofa parametric stoekecruitment functiorflight red bars open circles)
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Predictionskill is Pearson correlation coefficient calculated in original recruitment units.
Mediterranean Sea recruitmgmediction skill with the effect July SST (bounding bexA &

B), Gulf of Mexicounivariatepredictionskill (C & D), north Pacifigoredicton skill with E.
China Sea July SST (bounding bak E & F), and Southern Ocean predictekill with January
SST (bounding boxiii; G & H). Grey lines in B, D, F and H are observed recruitment.

Figure 6. Empirical dynamic modelifgDM) predictionsthat incorporatduly sea surface
temperature effects on Mediterranean Sea recrujtb@@nding boxv) andpredictionsfor Gulf
of Mexico recruitdbased only on recruitment time seriB3. Points are meapredictions with

+/- 1 standarekrror. Grey lines are recruitmemstimates from stock assessments

Figure 7. "Scenario exploration demonstrating the effects okéalgurface temperatu@ST;
bounding boxii) on Mediterranean Sea recruitment (in folfferenced and normalized units).
Scenario eploration adjusts observed SST observations to examine how recruitment predictions
would change if SST had been higher or lowér 0.5°C). Original predictions are shown by

orange circles. Effects of increasing SST on recruitment are shown by red upsirzgd fa

triangles and effects of decreasing SST are shown by blue downward facing triangles.

Figure 8. Prediction skill (Pearson correlatamefficient) whersimulatedrandom walk time
series were subject to lognormadistributed observation error in the form of correlated random

deviates at varying levels of random noige @nd autocorrelationg).
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Table 1. Time series of recruitment estimates and fishery-dependent indices.

Timeseries Age Years Assessment method Sour ce
S included

Recruitmentsestimates

Gulf of Mexicosstock 1 1971-2010 Virtual population analysis (Anonymous, 2014a’
Mediterranean Sea stoc 1 1951-2003 Virtual population analysis (Anonymous, 2014a’
North Pacific'stock 0 1954-2008 Stock synthesis (Anonymous, 2014b)
SouthernOcean stock 0  1953-2009 Age-structured model  (Anonymous, 2014c)
Fishery-dependent

indices

Spanish baitboat index 2,3 1964-2006 (Anonymous, 2014a’
Japanese troll fishery 0 1980-2012 (Anonymous, 2014b)
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Table 2. Simplex predictions for recruitment estimates using variables selected from convergent
cross mapping. n/a is not applicable, box refers to bounding boxes (Figs. Jo&i2Rearson
correlatien“coefficient and is calculated in original recruitment units, and univariate refers to the

case where no environmental forcing variables are included in state-space reconstruction.

Stock Spaw Predictio Forcing Bounding Forcing E P
n n variable box lag

timing approach

Mediterranean Jun- EDM Univariate n/a n/a 1 0.64
Age-1 recruits Jul

EDM July SST [ -1 1 061
EDM July SST ii -1 1 059
EDM May SST iii -1 1 0.65
EDM July SST ii -1 1 0.69
EDM July SST v -1 1 0.69
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Gulf of Mexico  Apr- EDM Univariate n/a n/a 3 0.51

Age-1 recruits Jun

North Pacific Apr- EDM Univariate n/a n/a 6 0.00
Age-0 recruits Jun, EDM May SST IX 0 6 -0.03
Aug EDM July SST Xi 0 6 -0.02

EDM Aug SST Xi 0 6 0.06

EDM July SST Xii 0 6 0.03

EDM Aug SST Xii 0 6 0.04

Southern Ocear Sep- EDM Univariate n/a n/a 3 0.73
Age-0 recruits Mar EDM Jan SST Xiii +1* 3 0.74

*Recruits occurring between September of year x and May of year x+ 1 are classified as year X,

thus +1 lag.affects age-0 recruitment.
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Table 3. Simplex predictions for fishery-dependent indices using variables selected from
convergent cross mapping. n/a is not applicable, box refers to bounding boxes (Figs.A & 2),
is Pearson correlation coefficient and is calculated in original index units, and univariate refers to

the case where no environmental forcing variables are included in state-space reconstruction.

Stock Spawn Predictio Forcing Bounding Forcing E P
timing n variable box lag
approach
Mediterranean./ Jun-Jul EDM Univariate n/a n/a 9 0.07
Spanish EDM May SST [ -3 9 0.10
baitboat index EDM June SST [ -3 9 0.09
EDM June SST [ -2 9 0.08
EDM July SST [ -2 9 0.10
EDM May SST i -2 9 0.09
EDM June SST iii -3 9 0.12
EDM July SST il -3 9 011
EDM July SST iii -2 9 0.10
EDM May SST iv -3 9 0.08
EDM June SST iv -3 9 0.10
North Pacific Apr- EDM Univariate n/a n/a 1 0.28
Japanese age- Jun, EDM Mar SST IX 0 1 -0.18
index Aug EDM July SST iX 0 1 -0.14
EDM July SST X 0 1 0.00
EDM Mar SST Xii 0 1 -0.29

This article is protected by copyright. All rights reserved



44 - Europe (A)

42 - iv

40

Mediterranean Sea

34

32 Africa

30 —

32
(B)

28 vi
vii h 1
26 1Y
viii L

Florida

Gulf of Mexico
22

20 Mexico

18 - T T T T T

-95 -90 -85 -80 -75 -70

fog 12205_f1.tiff

This article is protected by copyright. All rights reserved



xii

(A)

35
30

———————— K

| |

| |

CHinese Taipei’ 1

25 ' !

|- |

| ix X |

| |

[ M |

T T T

120 125 130

T
100 110

Author Manuscript

120 130

fog 12205_f2.tiff

This article is protected by copyright. All rights reserved



- ---+ Pacific, E China Sea July SST
5 Mediterranean Sea July SST
© Southern Ocean Jan SST
S 03
<}
o
=
S -
& 0.2 -
g -
S
5 0.1
4
o
Q
o
0.0 —

—
—
ﬂ-

[ I I I I I
20 25 30 35 40 45

Library length

fog 12205_f3.tiff

This article is protected by copyright. All rights reserved

50



Fia s wik | ad andlwmul
A
L L
&

s
=,
-H""'H.

P per <zl 20 cmikchn
m om
oL
r T

3 '

-

H
> .
-

'.L-__}L ==
L —_— L]
1 i i i i i i
i 1 i T ] 1 a i 1 ] i = 1
Crzarep kg Trma T B

fog_12205_f4.tiff

Author Manuscript

This article is protected by copyright. All rights reserved



.=
B dpdcamie + 23T 1] -E : i -._?.
=
Faraniwrir. = £ x Loom Uy
E 1 % = _*.'_-\.L-' TR Y |
n e | Bk +
WiHwIram e 1 L S g ""i:. HER T .
5 qe- TR S
lirdvariake FTEA L .
1 1 | i '
] [ | 1 e 13431 LT 1941 ] L i b |
Frarson cormciabnn coefcient Yoar
[.2
IEI = " wo
PR - Eore
= Li- = 5
o oy Seaa  gf aw e lads
Hirdwzrizre FOES _ E LS B L e e P e L] o
|
1 1.1 1 1ET] &0 10 . | rid
Fearson cormcdabdan coofcient Yo
w AR s
Parpimeliz « Z5T I Iri ki I
= a4 =
Paimimny | E R . 1T i
£ . S
Whalasrrirls B I B X iy PGt
- REREE L 'k:mﬂ:'-.ﬁ"—-‘-:'ﬂ:ﬂ L
= ] . ]
Aheseraly B | 5 ot ] il
T T T T
J 15 1 b LB = B oy - | O [ ot B | e ]
Faataca cvendd alion cralmsian Ly
- 1 - ' B 1 + [
Fa-armeirz + 55T -1 h 1 J 4
Parmmsnc E L] 'h""'E'.I"-"'.U'l ) -
; g f . 1 s
.
WuHyerigls LR E i- k-3 : Sacs ...
o ® .i'-"ll-'_,:..- .
“asenels BT [ g " .1
T T T
1 B 1 THE 1= CTEM CHEC TEEL e Aann
Puuricn corralubnon confficinnt Y uar

fog_12205_f5.tiff

This article is protected by copyright. All rights reserved



Recruits {millions)

Recruits {millions)

0.5

0.4

0.3

0.2

0.1

(A)

| Vsl

' }1% e, AT & EH
] \I{IIEEI EIIIIEII I}*EI* { 4 )

_ Year (B)
1 =

- EIEIIIIIIIIIIIEIIIIIIEIEIIIIEIEIEEI

fog _12205_f6.tiff

This article is protected by copyright. All rights reserved



E s T L If! ':" a .-II Illrtl
E S Ll 0 B & N IR
Tl

o u' 5 : [ - | T
{ L ; R
g \

]
n 17 ) 2]
T

fog 12205_f7.tiff

Author Manuscrip

This article is protected by copyright. All rights reserved



05 048 048 044 044 041 038 036 031 029

08 047 046 042 0.39

06

S

04

02

0.0

0.0 0.2 0.4 0.6 0.8

¢

fog 12205_f8.tiff

Author Manuscript

This article is protected by copyright. All rights reserved

09

0.8

o
bt
Fredlctlon skill

o
@

o
wn

0.4

0.3



