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ABSTRACT 20 

 21 

Environment-recruitment relationships can be difficult to delineate with parametric 22 

statistical models and can be prone to misidentification. We use nonparametric 23 

time series modeling which makes no assumptions about functional relationships 24 

between variables, to reveal environmental influences on early life stages of 25 

bluefin tuna and demonstrate improvement in prediction of subsequent 26 

recruitment. The influence of sea surface temperature, which has been previously 27 
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associated with larval growth and survival, was consistently detected in 28 

recruitment time series of bluefin tuna stocks that spawn in the Mediterranean Sea, 29 

the North Pacific, and the Southern Ocean. Short time series for the Gulf of 30 

Mexico stock may have precluded a clear determination of environmental 31 

influences on recruitment fluctuations. Because the nonparametric approach does 32 

not require specification of equations to represent system dynamics, predictive 33 

models can likely be developed that appropriately reflect the complexity of the 34 

ecological system under investigation. This flexibility can potentially overcome 35 

methodological challenges of specifying structural relationships between 36 

environmental conditions and fish recruitment. Consequently, there is potential for 37 

nonparametric time series modeling to supplement traditional stock recruitment 38 

models for fisheries management. 39 
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 54 

Introduction 55 

Since the Thompson-Burkenroad debates, the relative importance of environment versus 56 

fishing on the variability of fisheries has remained both unresolved and highly contentious 57 

(Burkenroad, 1946; Thompson and Bell, 1934; Vert-pre et al., 2013). Variability in year class 58 
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strength of fishes can depend on exploitation patterns and biological and environmental 59 

conditions, including those experienced during early life stages (Cushing, 1969; Hjort, 1926; 60 

May, 2011). Among biological contributions to year class variability, egg production and early 61 

life stage starvation, predation, and cannibalism have formed the basis of stock-recruitment 62 

theory (Beverton and Holt, 1957; Ricker, 1954; Shepherd and Cushing, 1980). With regards to 63 

environmental contributions, there is renewed interest in environmental effects on recruitment 64 

variability, as lengths of environmental and fisheries time series continually increase. Recent 65 

reconsideration of time series such as the RAM legacy database has rekindled the environment-66 

fisheries debate and has suggested that the environment does, in many cases, have a substantial 67 

impact on fisheries productivity (Ricard et al., 2012; Szuwalski et al., 2015). The multitude of 68 

environmental time series available for evaluation almost always leads to multiple hypothesis 69 

testing, which requires correcting for the level of significance (Dunn, 1961). Accordingly, even 70 

when significant correlations are found, they do not necessarily imply causation.  71 

A variety of parametric statistical methods have been considered in evaluating whether 72 

environmental conditions influence recruitment (Alheit and Hagen, 1997; Govoni, 2005; Myers 73 

et al., 1993; Quinn and Deriso, 1999). Problematically, evidence of environment-recruitment 74 

relationships can appear to be ephemeral, existing as positive correlations at some times and as 75 

negative correlations at other times (Beamish et al., 2004; Carscadden et al., 2000; Myers, 1998; 76 

Ravier and Fromentin, 2004). The ephemeral nature of environment-recruitment relationships 77 

can reflect the presence of nonlinear dynamics and weak coupling among variables, both of 78 

which are typically not amenable to modeling through linear (additive) statistical methods (Clark 79 

et al., 2015; Glaser et al., 2014a; Hsieh et al., 2008; Sugihara et al., 2012). As an alternative to 80 

parametric empirical analysis, nonparametric approaches are demonstratively useful in detecting 81 

ecological interactions (Glaser et al., 2014b; Liu et al., 2014; Perretti et al., 2013).  82 

Advances in nonparametric time series modeling have improved our ability to distinguish 83 

causative relationships from spurious correlations (Sugihara et al., 2012). In addition, where 84 

parametric modeling may be insufficient to capture complex dynamical interactions in natural 85 

systems, a more robust approach is offered via nonparametric empirical dynamic modeling 86 

(EDM; Deyle and Sugihara, 2011; Deyle et al., 2013). Complex dynamics are pervasive in 87 

marine environments and arise because of high system dimensionality (i.e. the number of 88 

interacting processes in natural systems, including fishery exploitation) and the interdependence 89 
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of variables that produce nonlinear population dynamics (Anderson et al., 2008; Glaser et al., 90 

2014a; Hsieh et al., 2005; Liu et al., 2012; Steele and Henderson, 1984; Walters and Collie, 91 

1988). As a nonparametric method, EDM offers considerable modeling flexibility because no a 92 

priori  sets of equations are needed to represent system dynamics (e.g. structural modeling 93 

equations). Instead, EDM relies on the structure of the data to identify interacting variables by 94 

utilizing dynamical similarities between sequences of observations, which can accordingly 95 

accommodate a variety of dynamical system behaviors (Glaser et al., 2011; Perretti et al., 2013).  96 

In traditional fisheries stock assessments, recruitment of fish to the population is modeled as 97 

a parametric function of the spawning stock size through a stock-recruitment relationship, for 98 

which the strength, functional form or even existence of a relationship remains a fundamental 99 

source of uncertainty (Gilbert, 1997; Maunder and Deriso, 2003; Myers and Barrowman, 1996).  100 

Further, as the stock recruitment relationship defines the benchmarks by which stock status is 101 

evaluated and forms the basis for projected future recruitment levels that determine allowable 102 

catches, it remains highly controversial (Rose et al., 2001). Few species epitomize the 103 

controversial nature of assumptions surrounding the stock-recruitment relationship as the global 104 

bluefin tuna stocks which include the eastern and western Atlantic (Thunnus thynnus, 105 

Scombridae), Pacific (Thunnus orientalis) and Southern Oceans (Thunnus maccoyii). 106 

Assessments of Western Atlantic bluefin tuna have struggled for many years with the divergent 107 

high versus low recruitment hypotheses with little resolution (Fromentin, 2002; Rosenberg et al., 108 

2013) and likely little potential for resolution through classical parametric stock-recruitment 109 

model fitting approaches (Porch and Lauretta, 2016). For this reason, and as many of the early 110 

life history processes that define appropriate larval survival appear to be environmentally driven, 111 

bluefin tuna represent an excellent focal species for demonstrating how nonparametric EDM 112 

approaches can be used to identify environmental variables that improve recruitment predictions.  113 

Bluefin tuna spawn in narrowly defined geographic areas (Block et al., 2005; Farley and 114 

Davis, 1998; Garcia et al., 2005; Satoh et al., 2008). We leveraged these four well-defined 115 

spawning distributions to reveal a consistent pattern in relationships between sea surface 116 

temperature (SST) occurring in spatiotemporal proximity to larval abundance and subsequent 117 

recruitment to the fishery. SST has been an important environmental factor in descriptions of 118 

bluefin tuna spawning and larval habitat (Alemany et al., 2010; Davis et al., 1990; Garcia et al., 119 

2005; Muhling et al., 2012; Satoh, 2010; Tanaka et al., 2007; Teo et al., 2007). Prevailing 120 
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environmental conditions are proposed to influence growth and survival in a density-dependent 121 

manner (Bakun, 2013; Bakun and Broad, 2003; Masuda et al., 2002; Matsuura et al., 1997; 122 

Reglero et al., 2011; Tanaka et al., 2006; Young and Davis, 1990). Consequently, our study is 123 

less about addressing an ecology gap in defining larval tuna habitat, and more about 124 

demonstrating the utility of nonparametric predictive models that reflect the complexity of the 125 

ecological system under investigation. Given the potential complexity of larval bluefin tuna 126 

ecology, it may be unreasonable to expect relationships between environmental conditions and 127 

recruitment to align with simple mechanistic models (Bakun, 2010; Fromentin and Restrepo, 128 

2001). Accordingly, we demonstrate the utility  of nonparametric time series modeling and 129 

compare models that include environmental variables to those that do not. Nonparametric 130 

predictive performance is also compared with a parametric stock-recruitment model. Finally, 131 

EDM is used to demonstrate how model predictions and related uncertainty measures can be 132 

useful in conveying scientific advice. 133 

 134 

Methods 135 

Time series of recruitment estimates and fishery-dependent recruitment indices 136 

 137 

Age-1 recruitment for the eastern Atlantic stock that spawns in the Mediterranean Sea and for 138 

the western Atlantic stock that spawns in the Gulf of Mexico were both estimated using virtual 139 

population analysis that did not impose a stock-recruitment function (Table 1). We excluded 140 

years 2004-2013 from analysis of the eastern Atlantic stock to avoid estimates that were 141 

potentially prone to retrospective bias, a condition where the estimated values change depending 142 

on the terminal year of the assessment (Anonymous, 2014a; Mohn, 1993). Age-0 recruitment for 143 

the Pacific stock was estimated using a fully-integrated stock assessment model, from which 144 

1952 and 2009-2012 were excluded to avoid retrospective bias (Anonymous, 2014b). Terminal 145 

and, sometimes, initial years of recruitment are often poorly informed by data, hence a common 146 

practice is to consider estimates for these years as unreliable (Anonymous, 2014a). Stock 147 

assessment of Pacific bluefin tuna incorporated a Beverton-Holt stock-recruitment function 148 

(Methot and Taylor, 2011); however, alternative versions of this assessment that did not 149 

functionally constrain recruitment estimates produce nearly identical results (M. Maunder, 150 

personal communication). Thus, Pacific recruitment estimates were thought to reflect 151 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

environment and spawning conditions rather than being affected by an assumed stock-152 

recruitment relationship. Age-0 recruitment for Southern Ocean bluefin tuna was also available 153 

from a stock assessment (Anonymous, 2014c).  154 

By necessity, recruitment estimates used in this analysis were model-derived products rather 155 

than empirical measures of recruitment, though they are little constrained by a stock-recruitment 156 

relationship. Recruitment estimates integrated multiple sources of information such as age or 157 

length composition and relative abundance indices to obtain consistent estimates of recruitment. 158 

Ideally we would want to consider only empirical indices of recruitment, however, despite the 159 

global importance of bluefin tuna there exist very few long-term scientific surveys and few that 160 

would permit, either by length of time series or by perceived reliability as indicators of 161 

recruitment, exploration using EDM. EDM tends to perform better on time series that are longer 162 

than 40 observations (Glaser et al., 2011, 2014a; Sugihara et al., 1996). Most of the other indices 163 

that exist generally are fishery-dependent and reflect multiple age classes. Even the single 164 

scientific survey for western Atlantic bluefin tuna- a larval index – is considered a better 165 

indicator of the spawning stock than of recruitment. This leaves only two indices – an age-0 166 

trolling index in the Pacific Ocean and the Spanish baitboat index for ages 2 and 3 in the eastern 167 

Atlantic Ocean – that permit exploration by EDM.  168 

These two fishery-dependent recruitment indices were thus used to further evaluate 169 

environmental effects on bluefin tuna recruitment. For the years of 1964 to 2006, an age-170 

aggregated index of 2 and 3 year old fish harvested by the Spanish baitboat fishery was analyzed 171 

(Table 1). Although this index begins in 1952 and extends beyond 2006, 1952-1963 and 2007 172 

and beyond were excluded because fleet selectivity changed during these time periods 173 

(Anonymous, 2014a). For the north Pacific stock, standardized catch-per-unit-effort for the 174 

period of 1980-2012 from the Japanese coastal troll fisheries of Kochi, Wakayama, and Nagasaki 175 

Prefectures has been used as an age-0 index in stock assessment and was included in our analysis 176 

(Anonymous, 2014b). 177 

Time series of SST 178 

In delineating spatial and temporal extents of SST measurements to be used in the analysis, 179 

we utilized spatial information about spawning and larval distributions, as well as temporal 180 

information about spawning events, and timing of flexion and gastric development (Kaji et al., 181 

1996; Kitagawa et al., 2010; Sawada et al., 2005). We summarized SST patterns by first taking 182 
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the broadest possible spatial view, followed by more localized pattern characterization. We 183 

constrained the temporal extent of our analysis to months of the year closely preceding, during, 184 

and following reported spawning peaks. Non-interpolated monthly mean SST was obtained from 185 

the International Comprehensive Ocean-Atmosphere Data Set at 2-degree spatial resolution 186 

(ICOADS; National Climatic Data Center). SST at 2-degree grid cell resolution was aggregated 187 

into larger bounding boxes using grid cell sample size to compute weighted means and 188 

variances. We also obtained seasonal and annual indices of Atlantic Multidecadal Oscillation 189 

(AMO) and Pacific Decadal Oscillation (PDO); these broad-scale climate indices are particularly 190 

useful to consider because they are readily available for testing, and can represent the combined 191 

effects of a range of regional-scale processes thought to affect recruitment success. 192 

Atlantic bluefin tuna spawn in the Mediterranean Sea in June and July in proximity to the 193 

Balearic Archipelago and eastward towards Sicily (Garcia et al., 2005). We delineated a 194 

bounding box surrounding the Balearic Archipelago (35o to 43o North and -5o to 8o East) and 195 

three sequentially smaller boxes covering the south-west Mediterranean Sea, the extent of 196 

surveys conducted by the Instituto Español de Oceanografía, and an area south of the 197 

archipelago where high larval densities have been reported (Fig. 1A; Alemany et al., 2010; 198 

Garcia et al., 2005). In the Gulf of Mexico, larval bluefin tuna tend to occur in the Loop Current 199 

(LC) front and in the boundaries of anticyclonic mesoscale features outside of the LC region of 200 

influence (Lindo-Atichati et al., 2012). Spawning occurs during the months of April, May, and 201 

June (Block et al., 2005). Four bounding boxes were specified, the largest of which encompassed 202 

the northern Gulf of Mexico (25o to 29o North and 265o to 276o

North Pacific bluefin tuna spawn in proximity to Chinese Taipei, the Ryukyu Islands, and in 207 

the Sea of Japan (Satoh, 2010). Spawning occurs in the Sea of Japan in August and in proximity 208 

to the Ryukyu Islands and Chinese Taipei from April to June (Satoh et al., 2008). Larval bluefin 209 

tuna have been collected south and east of Chinese Taipei (Itoh, 2006; Kitagawa et al., 2010). 210 

We specified four bounding boxes, the largest of which encompassed the East China Sea (22

 East), followed by the region of 203 

immediate influence (ROI) of the spring LC, the area west of the LC where spawning and larvae 204 

have been observed, and an area north of the LC (Fig. 1B; Lindo-Atichati et al., 2012; Muhling 205 

et al., 2013; Teo et al., 2007).  206 

o to 211 

38o North and 123o to 142o East), followed by an area surrounding the Ryukyu Islands, the area 212 

east of Chinese Taipei, and the area in the eastern Sea of Japan (Fig. 2A). Southern Ocean 213 
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bluefin tuna spawn in a narrow area between northern Australia and the Indonesian Island chain 214 

west of Java during a protracted season that occurs from September to March (Farley and Davis, 215 

1998; Farley et al., 2014). Larvae have been collected between 7o to 20o South and 102o to 124o

Detecting environmental effects on recruitment 218 

 216 

East (Farley and Davis, 1998) and a spatial bounding box was defined for this area (Fig. 2B). 217 

The underlying premise of nonparametric time series modeling is that dynamical sequences 219 

of observed events arise from latent ecological and environmental processes. If  a response 220 

process, like fish abundance, is influenced by a forcing process, then fish abundance should 221 

contain information about the forcing process in addition to information about its own internal 222 

dynamics (Sugihara et al., 2012; Takens, 1981). Taken’s (1981) theorem shows that time-223 

delayed coordinate embedding captures properties of the original dynamic system. Time-delayed 224 

embedding involves transforming a time series into a set of time-delayed coordinate vectors, 225 

( )2 1, , , ,t t t t t Ex x x xτ τ τ− − − − =  X   , where x is a time series variable of interest, t is time, τ  is the 226 

time lag, and E is the embedding dimension. The embedding dimension is the number of time-227 

delayed coordinates used in reconstruction (Glaser et al., 2014a; Sugihara and May, 1990).  228 

Simplex projection utili zes the idea that coordinate vectors that are similar at time t are also 229 

expected to have similar trajectories at t+1. In generating predictions, different values of the 230 

embedding dimension E (integers between 1 and 10) were evaluated to determine the 231 

dimensionality that provides best prediction skill. To calculate prediction skill, coordinate 232 

vectors were divided into sets of library vectors (to build the model) and prediction vectors (to 233 

test the predictive skill of the model). Prediction skill was calculated as the Pearson correlation 234 

coefficient (ρ ) between observed and predicted values. Euclidean distance was calculated 235 

between the prediction vectortX  and all library vectors, and the E+1 nearest library vectors to 236 

the prediction vector were identified. The forward trajectories of the nearest neighbors, xj,t+1


1tx +

, 237 

where j denotes the index of the E+1 neighbors, were then used to generate weighted 238 

predictions,  , for tX : 239 

 
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Weights are ( )( )exp , /j t jw d d= − X X , which is the Euclidean distance, ( ),t jd X X , to neighbor 241 

vector  j relative to the nearest neighbor vector d . Because our recruitment time series tended to 242 

be short, predictions were made using leave-one-out cross-validation, rather than splitting the 243 

datasets into library and prediction vectors. All analyses were conducting in the R statistical 244 

computing environment using the rEDM library (R Development Core Team, 2012; Ye et al., 245 

2015a). Data were first-differenced ( 1t tx x x+∆ = −  ) and normalized (mean = 0, standard 246 

deviation = 1). It is a typical practice in EDM to first-difference and scale data inputs, as scaling 247 

allows time series comparison in relative terms and differencing addresses nonstationarity. 248 

To determine whether environmental signals could be detected in recruitment dynamics, we 249 

used Convergent Cross Mapping (CCM; Sugihara et al., 2012). CCM is simplex-based EDM 250 

technique that was used to address whether a response time series can be used to reconstruct a 251 

forcing time series. This approach may appear counter-intuitive, but corresponds to Takens’s 252 

theorem that a response process should contain an information signature about a related forcing 253 

process (Sugihara et al., 2012). In addition, time delays (lags) in cross-mapping are informative 254 

in understanding the timing of effects between variables (Ye et al., 2015b). Time series of 255 

sequentially increasing length, L, were used to reconstruct the forcing variable and to evaluate 256 

the presence of convergent behavior, i.e. that prediction skill improves as L increases. This 257 

criteria is used to distinguish causality from simple correlation, because prediction skill should 258 

increase as more information is included in the analysis (Sugihara et al., 2012). All possible 259 

library vectors of length L were compared to the prediction data, which results in n estimates of 260 

prediction skill. Convergence was considered to occur if mean prediction skill at the longest L 261 

was greater than 0 (i.e. centered 80% of n observations did not include 0) and greater than 262 

prediction skill at the shortest L (Clark et al., 2015). 263 

Short-term forecasting using environmental indices 264 

While CCM is useful for detecting relationships between variables, it is not designed to 265 

generate short-term predictions per se. Deyle et al. (2013) describes the related technique of 266 

EDM that relies on both the response and forcing data to generate time series predictions. EDM 267 

advances Takens’s approach to situations where multiple system components are analyzed 268 

together (Deyle and Sugihara, 2011). In our analysis, multivariate embedding was constructed 269 

that included a forcing variable, y (e.g., ( )2 1, , , , ,t t t tt Ex x x x yτ τ τ− − − −   ). While Taken’s theorem 270 
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suggests that information about a forcing variable should already be contained in a response time 271 

series, it is not redundant to include stochastic forcing variables in multivariate embedding 272 

because stochastic variables lack deterministic signals. Thus, including stochastic variables in 273 

multivariate embedding should improve prediction (Deyle et al., 2013).  274 

We included SST variables that were previously selected using CCM analysis in simplex-275 

based EDM and evaluated whether relative improvement in predictive skill was obtained. We 276 

first used a null model to calculate probabilities that predictive skill could be improved by an 277 

unrelated environmental time series. Permutation testing involved shuffling the actual SST 278 

variable, y, to remove any relationship with recruitment x, and then we included the shuffled 279 

variable in predictions of x. Then, a null distribution of prediction skill consisting of 1,000 280 

permutations was calculated. The null distribution was used to calculate the probability that null 281 

model prediction skill exceeded prediction skill from the actual recruitment and SST time series. 282 

EDM predictions were also compared to maximum likelihood fits of a parametric stock-283 

recruitment relationship that included the same SST variables selected using CCM (Bolker, 284 

2015; R Development Core Team, 2012). We used a Ricker functional form for its flexibility to 285 

fit  different shapes of the stock-recruitment relationships. As the focus of the project was not to 286 

explore different functional forms, we did not evaluate the fits of alternative models. 287 

Two additional analyses were carried out to address directionality of recruitment responses to 288 

environmental variables and to quantify prediction uncertainty. Firstly, given that EDM enables 289 

prediction in a state-dependent manner, directionality of recruitment responses to SST must be 290 

determined through post hoc analysis, which is termed scenario exploration (Deyle et al., 2013). 291 

Scenario exploration proceeds by modifying the actual SST observation at the time lag 292 

associated with its effect on a single recruitment data point. A recruitment prediction is made 293 

under a small positive SST increase (0.5o

฀
1var( )tR +

C). If a hypothetical increase in SST would have led to 294 

a hypothetical increase in predicted recruitment, the relationship at that data point is positive. 295 

The process is also repeated using a small SST reduction. This two-step process is repeated at 296 

each data point to identify trends in recruitment response directionality, had temperatures 297 

hypothetically been cooler or warmer. Secondly, to quantify prediction uncertainty, confidence 298 

envelopes were calculated by summing variance terms attributed to (1) recruitment estimation 299 

uncertainty, reflecting imprecision of recruitment estimates used as data inputs ( ) and 300 

(2) EDM prediction uncertainty ( 
1var( )tx + ), given an assumed independence between these 301 
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variance terms. EDM prediction variance was calculated using mean annual recruitment 302 

estimates as (Ye et al., 2015a): 303 



( )1 2

1, 1
1

1 1

1

var( ) .

E

tj t
jj

t E

j
j

w x x

x
w

+
++=+ +

=

−
=∑ ∑   (2) 304 

Variance attributed to recruitment estimation uncertainty was quantified using 500 bootstrapped 305 

recruitment time series. Bootstrapped estimates reflected the range of likely outcomes of 306 

recruitment estimates while incorporating temporal autocorrelation between annual recruitment 307 

estimates. Recruitment estimation uncertainty was the variance between point estimates made 308 

from each bootstrap iteration.  309 

Observation error effects on prediction skill  310 

Given that employing model-derived recruitment estimates is not ideal, and yet the high 311 

level of observation error seen in many fishery-dependent or fishery-independent indices may 312 

preclude the detection of any true signal, it was informative to simulate observation error effects 313 

on prediction skill. The process of estimating recruitment in stock assessment models is likely to 314 

impart some level of autocorrelated error and potentially some bias as the estimates are products 315 

of an underlying model structure. Simple time series were simulated using a random walk model 316 

of the form 1 1t t tx x env− −= + , where env is a normally distributed white noise process (mean = 0, 317 

standard deviation = 0.2) representing an environmental influence on x. Observation error was 318 

introduced as lognormally-distributed error about the true values ( )2
exp 2t t tI x δε= − . 319 

Observation deviates, tε , were calculated as 2
1 1t tε φε η φ−= + + , where η  is a normally 320 

distributed random deviate with mean 0 and standard deviation δ  and φ  is the autocorrelation 321 

coefficient. Simulations consisted of using EDM to reconstruct time series when provided with 322 

the observed time series, I, and the observed environmental variable, env. In these simulations, 323 

prediction skill was measured as Pearson correlation coefficient (ρ ) between EDM predictions 324 

and the true values of variable x. Simulations were carried out 1,000 times for combinations of 325 

varying levels of δ  and φ . 326 

 327 
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Results 328 

Detecting environmental effects on recruitment  329 

 330 

Using CCM, a similar pattern emerged for three of four bluefin tuna stocks regarding 331 

environmental effects on recruitment. Our analysis of the Mediterranean stock revealed that 332 

regional SST series could be reconstructed from recruitment estimates (Table 2). Repeatedly, at 333 

each of the four bounding box spatial scales, convergent behavior of CCM was evident in the 334 

reconstruction of July SST; a month associated with peak spawning (Fig. 3). Reconstruction of 335 

July SST reflected a 1-year time lag in its association with recruitment of 1-year-old fish. This 336 

effect of SST on recruitment was unidirectional, meaning that CCM confirmed the intuitive 337 

possibility that SST could affect recruitment dynamics, and correctly dismissed the implausible 338 

reverse relationship. Our analysis of recruitment in the Gulf of Mexico suggested no dynamic 339 

similarity between recruitment and SST for this stock. In the north Pacific, convergent behavior 340 

in reconstruction of May SST was evident for the area east of Chinese Taipei (Table 2). At a 341 

broader spatial scale, July and August SST could be reconstructed for the bounding box that 342 

encompassed the East China Sea. In the north Pacific region, SST reconstructions corresponding 343 

to May and July reflect the spawning mid-point and the month immediately following spawning, 344 

respectively. In addition, reconstruction of SST in the Sea of Japan most strongly demonstrated 345 

convergent behavior during August, which is when spawning has been reported for this region. 346 

Analysis of recruitment in the Southern Ocean was more challenging, given the protracted nature 347 

of spawning in this region, but nevertheless CCM revealed a signal in recruitment dynamics that 348 

was associated with January SST. 349 

In analysis of both Atlantic stocks and the north Pacific stock, convergent behavior was also 350 

evident in the reconstruction of ocean basin-wide climatic variability, namely AMO and PDO 351 

(Fig. 4). Given the basin-wide effects of these climate variables, the spatial distributions of 352 

larval, post-larval, or juvenile stages were of little help for inferring the timing of any effect 353 

between climate and recruitment. Instead, we relied strictly on time delays or lags between 354 

forcing and response variables. We examined cross mapping skill across a sequence of time 355 

delays (-3 to +3 years) between forcing variables and recruitment response. In the Atlantic 356 

Ocean, the strongest effect of AMO on Gulf of Mexico and Mediterranean Sea recruitment 357 
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occurred in winter, with no lag between the forcing variable and the age-1 recruitment response. 358 

Fall PDO could be reconstructed from age-0 north Pacific recruitment with no time lag (Fig. 4).  359 

Short-term forecasting using environmental indices 360 

In constructing EDM-based recruitment predictions for each bluefin tuna stock, we took a 361 

synoptic view of the spatial extent of SST effects on recruitment, meaning that we assumed that 362 

large scale SST should generally affect all larvae in a broad area in a similar way. This approach 363 

enabled recruitment predictions to be based upon SST that was coarsely estimated across large 364 

ocean expanses. In each oceanic region where spawning takes place, coarse regional temperature 365 

signals tended to reflect either the timing of peak spawning or the month immediately following 366 

spawning (Fig. 5). In the Mediterranean Sea, recruitment prediction was improved by including 367 

July SST in EDM, and null model permutation testing produced a probability of 0.11 that 368 

predictive improvement occurred by chance. Likewise, parametric stock-recruitment predictions 369 

were improved when July SST was included as a multiplicative environmental effect. Compared 370 

to EDM-based predictions, parametric predictions were slightly better (Figs. 5A & 5B). For the 371 

north Pacific stock, EDM-based predictions were improved by including SST signals from either 372 

the East China Sea in July (bounding box xii; null model permutation prob. 0.07) or from the Sea 373 

of Japan in August (bounding box xi; null model permutation prob. 0.04). Neither SST time 374 

series improved parametric stock-recruitment predictions; consequently, EDM-based predictions 375 

were better overall (Figs. 5E & 5F). Predictions of Southern Ocean recruitment fared equally 376 

between EDM and parametric methods (EDM permutation prob. 0.26). 377 

Using the two fishery-dependent indices, we found convergent behavior (via CCM) for the 378 

Mediterranean stock in terms of reconstructing SST signals in months associated with spawning. 379 

CCM also revealed signals of AMO (summer, fall, and annual indices) in the Spanish baitboat 380 

index, and these effects were detected at time lags of 2 and -3 years, which is not surprising as 381 

the index pertains to 2 and 3 year old fish. Evidence of PDO signatures in the north pacific age-0 382 

trolling index were also found using CCM, and the strongest cross-mapping skill occurred for 383 

fall PDO, which was consistent with the fall PDO effect identified in the analysis of recruitment 384 

estimates. Moving from CCM to construction of predictive models using EDM, predictive skill 385 

was only improved slightly when SST was included in EDM-based predictions of the Spanish 386 

baitboat index and no improvement was observed for the north Pacific age-0 trolling index. 387 

(Table 3).  388 
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We used EDM to generate one-year ahead predictions for Gulf of Mexico and Mediterranean 389 

Sea recruitment (Fig. 6). Recruitment predictions for the Gulf of Mexico were made without 390 

inclusion of SST, as no SST variables improved prediction skill (Fig. 6B). We also used scenario 391 

exploration to reveal the underlying directionality of responses between SST changes and 392 

recruitment fluctuations (Fig. 7). For the Mediterranean stock, small adjustments to observed 393 

SST revealed a negative relationship with recruitment in 63% of predictions and a positive 394 

relationship in 37% of predictions. This result suggests that SST may influence recruitment in a 395 

state dependent manner. Negative effects of SST on recruitment were more consistently 396 

observed for north Pacific stock, with 75% of predictions demonstrating negative relationships 397 

with July SST in the east China Sea, and 92% of predictions demonstrating negative 398 

relationships with August SST in the Sea of Japan.  399 

Observation error effects on prediction skill  400 

Our simple simulations evaluated the effects of observation error on prediction skill. The first 401 

source of observation error was temporal autocorrelation and the second source of observation 402 

error was random noise. Temporal autocorrelation had little influence on prediction skill (Fig. 8). 403 

Conversely, random observation noise (δ ) eroded prediction skill of EDM. When both sources 404 

of observation error were introduced using a factorial design, prediction skill was more rapidly 405 

eroded as observation noise was increased in comparison to increases in autocorrelation.  406 

 407 

Discussion 408 

Using CCM and EDM together, our analysis demonstrated that SST in temporal and spatial 409 

proximity to spawning events, improved global prediction of recruitment for three out of four 410 

bluefin tuna populations. Short time series for the Gulf of Mexico stock may have precluded a 411 

clear determination of environmental influences on recruitment fluctuations. We found 412 

comparative effects of SSTs at peak spawning or the month following peak spawning on bluefin 413 

tuna recruitment in the Mediterranean Sea, north Pacific, and Southern Ocean, but not for the 414 

Gulf of Mexico. Temperature can mediate growth rates, post-flexion survival, onset of piscivory, 415 

and cue spawning for bluefin tuna (Evans et al., 2012; Fromentin and Powers, 2005; Reglero et 416 

al., 2011; Sawada et al., 2005). As a potential spawning cue, we identified weak SST signals in 417 

recruitment time series in the months preceding spawning or associated with the onset of 418 

spawning in the Mediterranean Sea, north Pacific, and the Southern Ocean (Table 1). Southern 419 
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bluefin tuna experience spawning peaks in October and February (Farley and Davis, 1998), 420 

suggesting that January SST could reflect either a spawning cue or an effect on recruitment 421 

success, or both. Likewise, SST signals in July and August in the East China Sea could be 422 

spawning cues, influence larval demography, or both. With respect to forcing by climate indices, 423 

our analyses of recruits demonstrated an approximately instantaneous response between climate 424 

and age-1 recruitment for both Atlantic stocks. In this instance, a lag of 1 year may be a useful 425 

heuristic about the influence of climate sometime during the first year of life, rather than an 426 

exacting measure of time lags between events (Ye et al., 2015b). However, the instantaneous 427 

response between climate and age-1 recruitment does not preclude the possibility that climate 428 

influences catchability, with this effect on data inputs to stock assessment being retained in the 429 

recruitment estimates that we analyzed. But notably, the ages-2 and 3 fish captured in the 430 

Spanish baitboat indices responded with lags that would reflect the climatic influence on 431 

recruitment 2-3 years prior. Similar results have also been obtained for other fishes (Alheit and 432 

Hagen, 1997; Hollowed et al., 2001).  433 

Using scenario exploration with EDM we found that, on average, temperature had a negative 434 

relationship with Mediterranean Sea and north Pacific recruitment. The state-dependent nature of 435 

EDM also revealed reasonably frequent positive recruitment responses to SST. The flexibility of 436 

EDM to characterize these relationships illustrates the potential for nonparametric methods to 437 

overcome methodological challenges of specifying structural relationships between 438 

environmental conditions and bluefin tuna recruitment (Fromentin, 2002; Pepin, 2015). The 439 

relative stability of bluefin tuna recruitment (in comparison to other fish stocks) may largely 440 

result from density-dependent survival at larval life stages, including interactions among 441 

conspecifics that hatch intermittently during a spawning period (Bakun, 2013; Royer and 442 

Fromentin, 2006). Bluefin tuna tend to spawn in lower productivity waters where convergence 443 

zones in ocean eddies work to aggregate larvae and potentially enhance cannibalism, which has 444 

been proposed to regulate recruitment fluctuations (Bakun, 2013; Kaji et al., 1996; Reglero et al., 445 

2011; Young and Davis, 1990). Dynamic feedback between successive hatching of larval cohorts 446 

during a spawning period, and the environmentally-driven manipulations of growth and 447 

consumptive interactions, together illustrate the complex interdependence among variables that 448 

influence recruitment (Catalán et al., 2007). Capturing these potentially nonlinear interactions 449 

was accomplished by non-mechanistic approaches such as those employed here. 450 
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While our analyses shed some light on the potential environmental processes affecting 451 

bluefin tuna recruitment, the purpose of our study was not to construct nonparametric models 452 

that reflected all facets the species’ larval ecology. Rather, our study was intended to 453 

demonstrate a process for identifying whether unique information about environmental time 454 

series is contained within a co-occurring biological time series (Sugihara et al., 2012; Ye et al., 455 

2015b). In this sense, variable selection for development of nonparametric models is probably a 456 

more important consideration than contrasting predictive skill with parametric approaches. 457 

Sugihara et al. (2012) and Ye et al. (2015a) identify several considerations related to variable 458 

selection in nonparametric modeling, including the possibility that causative variables may not 459 

be informative on their own, but require interaction with other variables (in multivariate EDM, 460 

for example) to produce skillful forecasts. Where other variables could be added to our analysis 461 

to improve prediction, EDM may be preferable to parametric models because additional 462 

variables may reveal nonlinear state-dependent behaviors (Glaser et al., 2014a; Sugihara et al., 463 

2012). Simulation testing conducted elsewhere has similarly shown that parametric fitting can be 464 

problematic when applied to nonlinear systems, even when the correct model is known, because 465 

useful information can otherwise be classified as observation or process error (Perretti et al., 466 

2013; Ye et al., 2015a). As a caveat, variables that improve prediction do not necessarily imply 467 

causality, but these variables may be proxies for more direct causative relationships (Clark et al., 468 

2015; Sugihara et al., 2012). Inclusion of metrics related to eddy activity or to the presence of 469 

convergence zones may improve prediction; however, the recruitment patterns that we analyzed 470 

predate the satellite era, thus requiring the use of a coarse-scale environmental data set.  471 

If analyses based on high quality satellite-derived products were possible, a clearer signal 472 

about environmental relationships could potentially be obtained. In the Mediterranean Sea, the 473 

eastward progression of Atlantic surface waters from the Strait of Gibraltar produces meanders 474 

that generate mesoscale anticyclonic eddies of diameters of ~100 km to ~150 km that last weeks 475 

to months (Garcia et al., 2005; Millot, 1999). Mesoscale eddies vary annually in intensity and in 476 

northward intrusion towards the Balearic Archipelago. These eddies create retention zones that 477 

may act to enhance biological interactions involving growing larvae (Bakun, 2013; Garcia et al., 478 

2005). Similar zones of retention are created in the Gulf of Mexico, as the spring Loop Current 479 

intrudes northward from the Caribbean Sea with an anticyclonic flow that produces mesoscale 480 

eddies with diameters >300 km and which propagate westward for periods of days to ~1 year 481 
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(Elliott, 1982; Lee et al., 1995; Oey et al., 2003). Likewise, northeastward Kuroshio Currents 482 

intersect the Ryukyu Islands and produce mesoscale eddies of at least 500 km in diameter, as 483 

does Indonesian current flow between northern Australia and the Indonesian archipelago (Bray et 484 

al., 1997; Kimura et al., 2010; Lee et al., 2013; Satoh, 2010; Yang et al., 1999). The physical 485 

conditions that arise from the progression of surface waters are likely to influence larval growth 486 

(Pepin, 1991; Pepin and Myers, 1991; Reglero et al., 2011). Bluefin tuna larvae have relatively 487 

early onset of flexion and gastric development, on the order of 15 days post-hatch, and these 488 

developmental events coincide with the onset of piscivory (Kaji et al., 1996; Miyashita et al., 489 

2001). Following these developmental events, larger and faster growing post-flexion individuals 490 

survive to subsequent developmental phases (Tanaka et al., 2006).  Comparatively, these 491 

developmental events appear to align with the timing of SST effects that we identified.  492 

Recruitment forecasting using nonparametric methods has also focused on salmon, for which 493 

direct estimates of recruitment back to natal rivers are often available (Ye et al., 2015a). For 494 

many species empirical estimates of recruitment are not available; indeed, for highly migratory 495 

species such as bluefin tuna, recruitment surveys are usually not feasible. Furthermore, when 496 

surveys are available they often have extremely high levels of observation error. While it is 497 

desirable to only use empirical data, often their absence and the high level of observation error 498 

associated with empirical observations necessitate use of model-based products in subsequent 499 

statistical analyses. When such use of stock assessment is unavoidable, it is advisable to: 1) 500 

consider uncertainty and bias in the stock assessment estimates themselves, 2) perform cross-501 

validation to evaluate predictive capability, 3) confer directly with analysts involved in the stock 502 

assessments, and 4) consider multiple lines of supporting evidence in drawing conclusions 503 

(Brooks and Deroba, 2015). Each of these recommendations was followed in this study, and 504 

additionally we carried out a simulation analysis evaluating the tradeoff between induced 505 

autocorrelation, as might occur with model-based products, and observation error commonly 506 

seen in empirical estimates. We might expect model-based products to have reduced observation 507 

error but induced autocorrelation due to the modeling process itself. This is certainly the case for 508 

western and eastern stocks of Atlantic bluefin tuna where age-slicing of length composition data 509 

dampens recruitment signals (Anonymous, 2014a). Observation error may also explain why we 510 

observed a small predictive improvement in model-based recruitment and no improvement in the 511 

empirical age-0 index for the north Pacific stock. Our simulation indicates that increased 512 
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observation error erodes predictability of EDM methods relatively quickly, while increased 513 

autocorrelation has a more moderate effect on prediction skill. With the appropriate cautions (see 514 

Brooks and Deroba, 2015), use of model-derived products may be a viable step toward 515 

improving recruitment predictions in cases where no direct recruitment estimates are available or 516 

where observation error in empirical estimates is high. We note, however, that our simulation 517 

was not exhaustive and did not consider situations where either the model output or the empirical 518 

data may exhibit bias; scenarios that would clearly confound the ability to recover the true signal. 519 

 Nonparametric approaches encompass a variety of related techniques that enable 520 

identification of causal links and can guide the construction of near-term prediction without 521 

requiring specification of structural equations (Deyle et al., 2013; Sugihara et al., 2012; Ye et al., 522 

2015b). Such nonparametric approaches do not negate the importance of stock-recruitment 523 

functions for fisheries management. To the contrary, deterministic signals pertaining to parent 524 

stock strength should be contained in recruitment patterns, as per the theoretical foundation 525 

provided by Takens’s (1981) theorem. Furthermore, future recruitment is fundamental to 526 

fisheries management, with nonparametric methods playing an increasingly relevant role in 527 

prediction (Munch et al., 2005). Near-term forecasts made using EDM could be particularly 528 

useful in instances where the newest cohorts have not yet become fully vulnerable to fishing, and 529 

thus may not be present in catch-at-age matrices. This is indeed the situation faced during stock 530 

assessments employing virtual population analysis, such as in assessments of Atlantic bluefin 531 

tuna (Anonymous, 2014a). This situation may also arise for assessments in which the newest 532 

cohorts are often the least reliably estimated yet have substantial influence on stock abundance 533 

and fisheries catches over temporal scales relevant to management (Brooks and Legault, 2015). 534 

Lastly, the detected influence of environmental drivers of recruitment in three out of four bluefin 535 

tuna stocks is promising for reconciling stock recruitment relationships that have remained so 536 

elusive for these species. Incorporating environmental factors such as SST, and likely several 537 

other environmental factors, into either a parametric recruitment relationship within a stock 538 

assessment model or a nonparametric approach, as done here, may reconcile deviations from a 539 

true stock recruitment relationship. Further, greater predictive skill of near-term recruitment may 540 

lead to determination of causes of historical changes in recruitment unrelated to spawning stock 541 

size, and consequently support improvements to bluefin tuna fisheries management. 542 

 543 
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Figure captions: 834 

Figure 1. Bounding boxes used to summarize sea surface temperatures in the Mediterranean Sea 835 

(A) and Gulf of Mexico (B). Latitude and longitude in decimal degrees. 836 

Figure 2. Bounding boxes used to summarize sea surface temperatures in the north Pacific Ocean 837 

(A) and Southern Ocean north-west of Australia (B). Latitude and longitude in decimal degrees. 838 

Figure 3. Convergent behavior demonstrating improvement of cross-mapping skill as time series 839 

library length increases. Convergence reveals forcing of recruitment dynamics by sea surface 840 

temperature (SST) through reconstruction of SST time series informed by the recruitment time 841 

series.  842 

Figure 4. Cross-mapping skill (Pearson correlation coefficient) of climate variables as a function 843 

of cross-mapping lag in years. Closed circles indicating lags exhibiting convergent behavior. 844 

AMO is Atlantic Multidecadal Oscillation, PDO is Pacific Decadal Oscillation, Med. is 845 

Mediterranean Sea, GOM is Gulf of Mexico.   846 

Figure 5. Comparison of empirical dynamic modeling-based prediction skill (dark red bars and 847 

closed circles) to that of a parametric stock-recruitment function (light red bars open circles). 848 
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Prediction skill is Pearson correlation coefficient calculated in original recruitment units. 849 

Mediterranean Sea recruitment prediction skill with the effect July SST (bounding box iv; A & 850 

B), Gulf of Mexico univariate prediction skill (C & D), north Pacific prediction skill with E. 851 

China Sea July SST (bounding box xii; E & F), and Southern Ocean prediction skill with January 852 

SST (bounding box xiii ; G & H). Grey lines in B, D, F and H are observed recruitment. 853 

Figure 6. Empirical dynamic modeling (EDM) predictions that incorporate July sea surface 854 

temperature effects on Mediterranean Sea recruits (A; bounding box iv) and predictions for Gulf 855 

of Mexico recruits based only on recruitment time series (B). Points are mean predictions with 856 

+/- 1 standard error. Grey lines are recruitment estimates from stock assessments. 857 

Figure 7.  Scenario exploration demonstrating the effects of July sea surface temperature (SST; 858 

bounding box xii) on Mediterranean Sea recruitment (in first-differenced and normalized units). 859 

Scenario exploration adjusts observed SST observations to examine how recruitment predictions 860 

would change if SST had been higher or lower (+/- 0.5o

Figure 8. Prediction skill (Pearson correlation coefficient) when simulated random walk time 864 

series were subject to lognormally-distributed observation error in the form of correlated random 865 

deviates at varying levels of random noise (

C). Original predictions are shown by 861 

orange circles. Effects of increasing SST on recruitment are shown by red upward facing 862 

triangles and effects of decreasing SST are shown by blue downward facing triangles.  863 

δ ) and autocorrelation (φ ). 866 
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Table 1. Time series of recruitment estimates and fishery-dependent indices. 

 

Time series Age

s 

Years 

included 

Assessment method Source 

Recruitment estimates     

Gulf of Mexico stock 1 1971-2010 Virtual population analysis (Anonymous, 2014a) 

Mediterranean Sea stock 1 1951-2003 Virtual population analysis (Anonymous, 2014a) 

North Pacific stock  0 1954-2008 Stock synthesis (Anonymous, 2014b) 

Southern Ocean stock 0 1953-2009 Age-structured model (Anonymous, 2014c) 

     

Fishery-dependent 

indices 

    

Spanish baitboat index 2, 3 1964-2006  (Anonymous, 2014a) 

Japanese troll fishery 0 1980-2012  (Anonymous, 2014b) 
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Table 2. Simplex predictions for recruitment estimates using variables selected from convergent 

cross mapping. n/a is not applicable, box refers to bounding boxes (Figs. 1 & 2),   is Pearson 

correlation coefficient and is calculated in original recruitment units, and univariate refers to the 

case where no environmental forcing variables are included in state-space reconstruction. 

 

Stock Spaw

n 

timing 

Predictio

n 

approach 

Forcing 

variable 

Bounding 

box 

Forcing 

lag 

E   

 

Mediterranean 

Age-1 recruits 

Jun-

Jul 

EDM  Univariate n/a n/a 1 0.64 

  EDM July SST i -1 1 0.61 

  EDM July SST ii  -1 1 0.59 

  EDM May SST iii  -1 1 0.65 

  EDM July SST iii  -1 1 0.69 

  EDM July SST iv -1 1 0.69 
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Gulf of Mexico Apr- EDM  Univariate n/a n/a 3 0.51 

Age-1 recruits Jun       

        

North Pacific  Apr- EDM  Univariate n/a n/a 6 0.00 

Age-0 recruits Jun, EDM May SST ix 0 6 -0.03 

 Aug EDM July SST xi 0 6 -0.02 

  EDM Aug SST xi 0 6 0.06 

  EDM July SST xii 0 6 0.03 

  EDM Aug SST xii 0 6 0.04 

        

Southern Ocean Sep- EDM  Univariate n/a n/a 3 0.73 

Age-0 recruits Mar EDM Jan SST xiii +1* 3 0.74 

 *Recruits occurring between September of year x and May of year x+1 are classified as year x, 

thus +1 lag affects age-0 recruitment.   
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Table 3. Simplex predictions for fishery-dependent indices using variables selected from 

convergent cross mapping. n/a is not applicable, box refers to bounding boxes (Figs. 1 & 2),   

is Pearson correlation coefficient and is calculated in original index units, and univariate refers to 

the case where no environmental forcing variables are included in state-space reconstruction. 

 

Stock Spawn 

timing 

Predictio

n 

approach 

Forcing 

variable 

Bounding 

box 

Forcing 

lag 

E   

 

Mediterranean Jun-Jul EDM  Univariate n/a n/a 9 0.07 

Spanish   EDM May SST i -3 9 0.10 

baitboat index  EDM June SST i -3 9 0.09 

  EDM June SST i -2 9 0.08 

  EDM July SST i -2 9 0.10 

  EDM May SST ii  -2 9 0.09 

  EDM June SST iii  -3 9 0.12 

  EDM July SST iii  -3 9 0.11 

  EDM July SST iii  -2 9 0.10 

  EDM May SST iv -3 9 0.08 

  EDM June SST iv -3 9 0.10 

        

North Pacific  Apr- EDM  Univariate n/a n/a 1 0.28 

Japanese age-0  Jun,  EDM Mar SST ix 0 1 -0.18 

index    Aug EDM July SST ix 0 1 -0.14 

  EDM July SST x 0 1 0.00 

  EDM Mar SST xii 0 1 -0.29 
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